Mathematical Reviews Sections

ENJOY THE CONVENIENCE OF HAVING MATHEMATICAL REVIEWS AT YOUR DESK. HAVE YOU THOUGHT HOW REALLY HANDY IT WOULD BE TO HAVE THE SECTIONS **RELEVANT TO YOUR RESEARCH RIGHT BEFORE YOU?**

MR has been divided into 37 affordable Sets for individual subscribers. Each month you can receive the Section Sets you have chosen with an'author index. With your December Sets vou will receive an annual author and subject index (as with MR). Also available for Section subscribers are three-ring binders of sturdy quality in the familiar tangerine color of MR to hold your subscription. The binders have a two-inch spine and are adequate to hold 400 pages.

Section Sets are divided into Class 1 and Class 2 according to the estimated number of pages per year.

Set	Sections	Subjects		🗆 2I	42, 43, 44, 45	Harmonic analysis, integral
🗆 1A	00, 01	General, history, biography (Class 1)		🗆 1J	46	transforms/equations (Class 2) Functional analysis (Class 1)
□ 1R	03 04	Logic found	ations set theory	🗆 1K	47	Operator theory (Class 1)
	05, 04	(Class 1)		🗆 2J	49	Calculus of variations, optimiz-
	05	Combinatorio	s (Class T)	T 2K	51 52	Coometry convex sets (Class 2)
⊔ 2A	06, 08	Order, lattice (Class 2)	s, general systems		53	Differential geometry (Class 1)
🗆 1D	10	Number theo	ry (Class 1)	⊔ 2L	54	General topology (Class 2)
🗆 2B	12	Algebraic nu	nber theory, field		55, 57	See 1E (18, 55, 57)
		theory, po	lynomials (Class 2)	🗆 1M	58	Global analysis, analysis on
🗆 2C	13, 14	Commutative	rings and algebras,			manifolds (Class 1)
		algebraic g	eometry (Class 2)	🗆 1N	60	Probability theory and stochas-
🗆 2Ď	15	Linear and m	ultilinear algebra.			tic processes (Class 1)
		matrix the	ory (Class 2)	🗆 1P	62	Statistics (Class 1)
🗆 2E	16, 17	Associative/n	onassociative	🗆 1Q	65	Numerical analysis (Class 1)
	,	rings, algeb	oras (Class 2)	🗆 1R	68	Computer science (including
🗆 1E	18, 55, 57	Category the	orv. algebraic			automata) (Class 1)
	, , -	topology,	manifolds (Class 1)	🗆 2M	70, 73	Mechanics of particles, systems,
🗆 1F	20	Group theory	, generalizations			(Class 2)
(T)E	22	(Class 1)		🗆 2N	76, 78, 80	Fluid mechanics, optics, elec-
	22	(Class 2)	ioups, Lie groups			ics (Class 2)
	26.28	(Class 2) Real function	a measure inte	□ 15	81	Quantum mechanics (Class 1)
	20, 20	gration (C)	ass 7)	□ 2P	87 83 85 86	Other physics astronomy astro-
□ 16	30 31 32 33	Complex ana	lysis notential		02, 03, 03, 00	physics, geophysics (Class 2)
	50, 51, 52, 55	theory sn	cial functions	□ 1T	00	Economics, operations to
		(Class 1)	ional ranotions			search programming games
П 1Н	34	Ordinary diff	erential equations			(Class 1)
	51	(Class 1)	erennar equations	T 20	92	Biology and behavioral sci.
□ 11	35	Partial differ	ential equations		52	ences (Class 2)
		(Class 1)		□ 1 U	93	Systems theory: control (Class 1)
□ 2H	39 40 41	Finite differe	nces, sequences.		94	Information and communica-
	,,	approximations (Class 2)			51	tion, circuits (Class 1)
		••	· ,			
	First Set		t Set	Each Add'l Set		Optional Binder
		Class 1	Class 2	Class 1	Class 2	\$5.00 each
Individual		\$36	\$27	\$30	\$21	
Individual		24	* <u></u> 2, 18	20	14	
· F	leviewer	24	10	20	14	
SE THIS		HOTOCOPY -			Date	

USE THIS PAGE OR A PHOTOCOPY TO ORDER.

----- enclosed for subscriptions selected and marked above.

□ \$5.00 enclosed for 2" tangerine binder stamped MATHEMATICAL REVIEWS SECTIONS on spine and front cover. (It is not required that one buy a binder.)

\$ _____ Total prepaid order.

\$..

_____ Your AMS code _____ Name ------Address ----

AMERICAN MATHEMATICAL SOCIETY P.O. Box 1571, Annex Station, Providence, Rhode Island 02901

MATHFILE Mathematical Reviews Online

MATHFILE is the online version of MATHEMATICAL REVIEWS, the authoritative record of published mathematical literature throughout the world. MR, a publication of the American Mathematical Society, provides essentially complete worldwide coverage of pure mathematics as well as those works in applied mathematics, physics, engineering, computer science, biology, operations research and other fields containing new and interesting mathematics. It contains reviews of 35,000 to 40,000 items each year which have been published in over 1,500 journals, books and book series.

All this material is available online with BRS and Dialog. The database, called MATHFILE, includes all bibliographic and subject information on articles and books reviewed in Mathematical Reviews since 1973. The file will be updated monthly with the addition of approximately 3,000 new items.

In addition to the bibliographic information, MATHFILE contains all the primary and secondary subject classifications attached to those items. Furthermore, starting with the material from mid-1979 issues of Mathematical Reviews, the text of each review is in the file.

Additional information may be obtained from

- J. L. Selfridge, Executive Editor, (313) 764-7228
- Mathematical Reviews, 611 Church Street, P.O. Box 8604, Ann Arbor, Michigan 48107 Taissa T. Kusma, Database Specialist, (401) 272-9500

American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940

MATHFILE User's Guide

A user's guide has been prepared by the Society to make searching MATHFILE easier, more effective and faster. The Guide includes:

Instructions. How to get started on the vendor's system, an explanation of the file and suggestions on search techniques.

List of Journals. Journal name abbreviations used by Mathematical Reviews, and the full titles as defined by the Library of Congress and those used by Mathematical Reviews; the ISSN, Coden, and useful publishing information.

Subject Classification Systems. A correlated display of the two (1970 and 1980) slightly different MR systems, and the Library of Congress system.

Index of terms occurring in the subject classification. Alphabetic listing of subject words from the MR classification system with the corresponding class numbers given for each. This list will be very helpful to searchers unfamiliar with the MR Subject Classification.

Title words of entries reviewed from 1973 to 1979, arranged alphabetically with class numbers under which the entries occurred and frequency of occurrence of each word in each section.

Inversion of the title word list, arranged by classification number, showing which title words occurred in each section and with what frequency. This will be useful in finding the right words to search a specific subject.

	ORDER CODE	List	AMS Members
User's Guide, 350 pages	USERSGUIDE	\$50	\$38
*List of Journals, 91 pages	ABBREXPAN	12	12
*Subject Classifications, 47 pages	SUBJSEXPAN	8	8
*Subject Word Index, 82 pages	SUBJWORDIN	15	15

*Offprints of separate chapters

Prepayment is required for all AMS publications. Order from AMS, P.O. Box 1571, Annex Station, Providence, RI 02901, or call toll free 800-556-7774 to charge with Visa or MasterCard.

Two prime sources for keeping abreast of innovative theories and applications

NETWORKS

Editor-in-Chief: F. T. Boesch Stevens Institute of Technology

Networks is devoted to disseminating information on this interdisciplinary area. It publishes invited and submitted manuscripts with research results, design techniques, tutorial surveys, book reviews, bibliographies, algorithms, and computer implementation techniques. All manuscripts are refereed.

Representative articles from recent issues:

Classification in Vehicle Routing and Scheduling

L.D. Bodin and B.L. Golden

An Advanced Dual Incremental Network Algorithm S. R. Schmidt, J. W. Barnes and P. A. Jensen

A Computational Analysis of Alternative Algorithms and Labeling Techniques for Finding Shortest Path Trees R. Dial, F. Glover, D. Karney and D. Klingman

A Cut Approach to a Class of Quadratic Integer Programming Problems

J.C. Picard and H.D. Ratliff

A Matroid Related to Finitely Chainlike, Countably Infinite Networks

A. C. Tucker and A. H. Zemanian Volume 13, 1983 Quarterly \$85 Outside U.S. add \$15 for surface postage and handling, or add \$55 for airmail delivery.

Founder-Editor: Frank Harary The University of Michigan

Managing Editors: Ralph J. Faudree and Richard H. Schelp, Memphis State University

Journal of Graph Theory presents current, informative articles on the theory of graphs, with emphasis on theorems, and provides a useful forum for the interchange of ideas between contributors and readers. Graph theory, a separate field within combinatorial theory, is applicable to essentially all disciplines of mathematics and statistics.

Representative and forthcoming articles:

Cycles in Digraphs—A Survey J.-C. Bermond and C. Thomassen

Vertices of Given Degree in a Random Graph B. Bollobás

On the Toroidal Thickness of Graphs I. Anderson

The Connectivities of Line and Total Graphs D. Bauer and R. Tindell

On the Origin of the n-Arc Theorem

K. Menger Volume 7, 1983 Quarterly: \$75 Outside U.S. add \$12 for surface postage and handling, or add \$44 for airmail delivery.

To order write: Subscription Department 39015 B John Wiley & Sons 1982 605 Third Avenue New York, N.Y. 10158 212-850-6570

or call toll free 800-526-5368. In N.J. 201-797-7809

J. P. Coleman and A. J. Monaghan, Chebyshev Expansions for the Bessel		
Function $J_n(z)$ in the Complex Plane	343	
F. M. Arscott, P. J. Taylor and R. V. M. Zahar, On the Numerical Construc-		
tion of Ellipsoidal Wave Functions	367	
G. Jaeschke , On the Smallest k Such That All $k \cdot 2^n + 1$ Are Composite	381	
Samuel S. Wagstaff, Jr., Divisors of Mersenne Numbers	385	
Peter Hagis, Jr., Sketch of a Proof That an Odd Perfect Number Relatively		
Prime to 3 Has at Least Eleven Prime Factors	399	
Masao Kishore, Odd Perfect Numbers Not Divisible by 3. II	405	
Reviews and Descriptions of Tables and Books		
Björck, Plemmons and Schneider, Editors 1, Ziegler, Editor 2, Hunt,		
Editor 3, Prudnikov, Brychkov and Marichev 4, Duff, Editor 5, Hagis 6		
Table Errata		
Davis and Rabinowitz 590		

No microfiche supplement in this issue

MATHEMATICS OF COMPUTATION TABLE OF CONTENTS

January 1983

Denial Michalson Stability Theory of Difference Approximations for Multidi	
mensional Initial-Boundary Value Problems	1
A. H. Schatz and L. B. Wahlbin, On the Finite Element Method for Singularly	
Perturbed Reaction-Diffusion Problems in Two and One Dimensions	47
Richard Sanders. On Convergence of Monotone Finite Difference Schemes	
with Variable Spatial Differencing	91
Tim Douglas In and Many Fanatt Wheeler Implicit Time Dependent Vari-	
able Crid Finite Difference Methods for the Approximation of a	
Lippor Waterflood	107
Deter A. Markerick and Christian A. Dischafter, Collection Matheda for	101
Peter A. Markowich and Unristian A. Ringholer, Collocation Methods for	100
Boundary value Problems on Long Intervals	123
Goong Chen, Wendell H. Mills, Jr., Shunhua Sun and David A Yost, Sharp	
Error Estimates for a Finite Element-Penalty Approach to a Class of	
Regulator Problems	151
J. R. Cash, Block Runge-Kutta Methods for the Numerical Integration of	
Initial Value Problems in Ordinary Differential Equations, Part I. The	
Nonstiff Case	175
J. R. Cash, Block Runge-Kutta Methods for the Numerical Integration of	
Initial Value Problems in Ordinary Differential Equations, Part II. The	
Stiff Case	193
G. J. Cooper and A. Sayfy, Additive Runge-Kutta Methods for Stiff Ordinary	
Differential Equations	207
O. Axelsson and I. Gustafsson, Preconditioning and Two-Level Multigrid	
Methods of Arbitrary Degree of Approximation	219
Thomas R. Lucas A Posteriori Improvements for Interpolating Periodic	
Splines	243
Gregory M Nielson A Method for Internolating Scattered Data Based Unon	
a Minimum Norm Network	253
Marka Laria On the American Coloulation of Double Internals	200
Mosne Levin, On the Approximate Calculation of Double Integrals	213
Boris Mityagin, Quadratic Pencils and Least-Squares Piecewise-Polynomial	
Approximation	283
P. H. M. Wolkenfelt, Modified Multilag Methods for Volterra Functional	
Equations	301
Angelo Lucia, An Explicit Quasi-Newton Update for Sparse Optimization	
Calculations	317
George Cybenko, A General Orthogonalization Technique With Applications	
to Time Series Analysis and Signal Processing	323
Walter Gautschi, On the Convergence Behavior of Continued Fractions with	
Real Elements	337